新闻  |   论坛  |   博客  |   在线研讨会
霍尔元件等集成电路发展史
wxhxkj01 | 2021-08-19 13:45:57    阅读:336   发布文章

当人类刚发明出集成电路(那时候还没有霍尔元件)的时候,当时的特征尺寸大概是5μm(5000nm),之后缩小到了3μm,发展至今,台积电已经开始量产5nm芯片了。在这个过程当中,制程共经历了21代变革,未来几年,3nm集成电路也将实现量产。从5μm到5nm,实现了1000倍的变化,大概经历了40年。
 
在这一过程当中,有一件比较神奇的事情,5μm阶段,当时的波长是436nm,而到7nm,波长是193nm,变化并不是特别大,这样,从光学的角度看,我们要实现将特征尺寸缩到波长的四十分之一,似乎是不可能完成的任务,我们需要跳出纯光学思维,从半导体的角度去考虑如何实现它。
 
 
人的头发横截面直径大概是80μm,以采用28nm制程工艺的SRAM为例,可以在头发的横截面上放20735个这个样的SRAM单元,随着微缩技术的发展,在直径为80μm的横截面上,可以容纳越来越多的SRAM单元了。这主要是由光刻工艺及其技术演进实现的。
 
光刻微缩的理论基础主要基于下图的方程式:分辨率和DOF(depth of focus,景深)。
 
 
从图中的公式可以看出,分辨率主要由三个因数决定,分别是波长λ、镜头角度的正弦值sinθ,以及k1,其中,对于做光刻的人来说,k1这个参数是非常重要的。
 
缩短波长和加大sinθ都可以提升分辨率,但这些都是有代价的,缩短波长λ、增加sinθ,DOF都会缩短,而k3和k1又是有关联的,且比较复杂。
 
对于采用不同设备制造相同制程IC的制造厂来说,其技术水平差异就会很突出,例如,有的厂商用EUV设备(光刻波长为13.5nm)才能做7nm芯片,而有的厂商用DUV设备(光刻波长为193nm)就可以做出7nm芯片,做同样的产品,前者需要更多的投资去购买更新近的设备,而后者则不需要。这就是通过高水平工艺提升分辨率W所产生的经济效益。
 
依据方程式,有4种方法可以提升分辨率W,而对于工程师来说,其中最方便的方法莫过于增加sinθ了,对于半导体厂的工程师来说,只要向老板多申请一些经费,订购大一点的镜头和机器就好了,因此,工程师会采取的首选方案,往往就是在sinθ上做文章。
 
增加sinθ需要大量的投资,而且越来越贵,此外,目前sinθ已经提升到0.93,已很难再提升,而且其不可能大于1。这样,我们可以通过改变波长λ来进一步提升光刻的分辨率。
 
减小k1也是一种方法。k1是一个系数,在显微镜应用当中,k1最小只能降到0.61,再小的话,东西就会模糊,看不清楚了,而在光刻领域,则不存在这个问题,只需要考虑线的位置,只要能曝光就好,因此,可以把k1降低到0.07。通过改变k1,可以不用更换镜片,不用改变波长和光阻,就可以提升分辨率,具有很好的经济效益。此外,DOF还有可能会增加。减小k1有这么多的好处,但其实现起来并不容易。
 
还有一种方法是增大n。n是折射率,通过改变n,也可以提升光刻系统的分辨率,最简单的方法就是在镜头和晶体之间加入水,以代替空气,也就是浸润式系统,通过增大n,可以得到短波长的效果。
 
当NA大于1的时候,特别是1.35NA时,需要放入具有特别构造的镜片,由于涉及到商业机密,下图中没有给出1.35NA的示意图,目前有两家公司可以做到这一点,他们采用不同的方法实现。
 
浸润式的原理,利用光通过液体介质时会弯折的特性,显微镜的影像透过浸湿的镜头会进一步放大。相反地,当光线通过浸在液体中的微缩影镜头时,就能将影像藉由折射率进一步缩小。
 
这里用水作为介质是最为经济高效的,否则就需要花几亿美金去研发新的、更好的介质,这样太耗费资金和时间,而且不一定能保证成功,算起来是划不来的。
 

作为浸润式光刻技术的发明人,林本坚对于产业的技术水平提升和经济效益做出了巨大的贡献。随着EUV的普及,更多的先进技术还会诞生,将继续把半导体光刻发扬光大。


如果您想了解更多华芯霍尔元件产品信息,欢迎访问我们的官网https://www.wxhxkj.com/或者https://www.chhxs.cn/,无锡华芯科技竭诚为您服务!

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客